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Abstract

A double pendulum with a stopper at the lower joint, as in a mammalian leg, has been studied. The impact

has been modelled in a computationally efficient manner using a spring–damper in combination with a logistic

function. An estimate of the coefficient of restitution of the impact based on stiffness and the damping coefficient has

been developed. The response and stability of the above system have been inspected through simulations with

varying coefficients of restitution. The decay rate of energy and angular momentum show dependencies unique to the case

on hand.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It has been established that torque proportional to the angle between the shank and the vertical stabilises a
biped mechanism [1]. A self-impacting double pendulum is a structural component of the gait cycle of a biped
with the impact being at the knee and has been studied here.

The response of a double pendulum without impacts is chaotic in nature [2]. A stopper at the lower hinge
mimics the knee joint impact of a leg, as shown in Fig. 1. This self-impact may or may not curb the chaotic
behaviour (intrinsic to the nonlinearity in the system), depending on the system parameters, the initial
conditions and the nature of impact (elastic or otherwise).

An impact model has been used to analyse the response of a self-impacting double pendulum with varying
coefficient of restitution. A methodology of modelling impact with energy losses amenable to the time domain
analysis has been proposed. The method, limited only by the computational ability of the solver, assumes
significance as the accuracy of solution of the nonlinear system resulting from the impact is driven by the
accuracy of the impact modelling. The oscillations of the system have been studied through phase-plane plots.
The decay rate of energy and angular momentum of the system from successive impacts have been tracked to
study the dependence on the coefficient of restitution.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

m1 mass of the upper link
m2 mass of the lower link
l1 length of the upper link
l2 length of the lower link
y1 angular displacement of the upper link

from vertical

y2 angular displacement of the lower link
from vertical

k spring stiffness
c damping coefficient
r coefficient in logistic function
T1

ct contact force torque on the upper link
T2

ct contact force torque on the lower link
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2. Spring–damper model of impact

2.1. Equations for unrestrained double pendulum

For a simple unrestrained double pendulum, the equations for kinetic energy (T) and potential energy (V)
with datum at the upper hinge and generalised coordinates as (y1, y2, dy1/dt, dy2/dt) are
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Fig. 1. Schematic of the double pendulum with a stopper at the lower hinge.
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Using the Lagrangian formulation of dynamics, we get the following equations:
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2.2. Modelling the impact

In conventional treatise on rigid body impacts, the impact is detected by the condition of y24y1. The
accuracy of the solution depends on the time step used in the numerical solution in the neighbourhood of the
impact point. Sangwan et al. [1] described the solution to their biped mechanism as being sensitive to the time
step used. However, they settled for a value low enough, such that the solution stopped varying with any
further reduction in time step. Since their biped mechanism was operating in a stable periodic cycle, there were
no issues in accuracy of the solution. However, for solutions of nonlinear systems operating in aperiodic
regimes, error in the time of impact or the angle of impact can lead to altogether different solutions.

2.2.1. Spring– damper model

Spring–damper systems have been used in nonlinear systems to examine the occurrence of chaotic motions
[3,4]. Thomsen [3] analysed the dynamics of an elastically restrained inverted double pendulum (subject to
follower-type non-conservative loading and linear damping) near the stationary points. Yu et al. [4] examined
a similar system with linear springs (instead of torsional springs [3]) for chaos and stability. Spring–damper
systems are also utilised in impact dampers for controlling high-amplitude vibrations and chaotic motion [5,6].

The interaction between two rigid bodies during the time of impact can be modelled as a spring and a
damper between the bodies undergoing impact. It is imperative to ensure that the spring–damper forces come
into force in the dynamic analysis only when the two bodies are infinitesimally close to each other. Chatterjee
et al. [6] used a Heaviside step function in their system of equations to capture this effect. It is not possible to
directly solve the equations with a step function and they substituted general solutions of the harmonic form
and expanded the terms in a Fourier series.

In the double pendulum, the impact is modelled as a torsional spring and a torsional damper. The torque
terms are multiplied by the Heaviside step function of the knee angle (y2�y1):

ðm1 þ 3m2Þ

3
l21
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m2l1l2 €y2 cosðy1 � y2Þ
2
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m2l22
€y2

3
þ

m2l1l2 €y1 cosðy1 � y2Þ
2

�
m2l1l21 _y

2

1 sinðy1 � y2Þ
2

þ
m2gl2 sin y2

2
þUðy2 � y1Þ kðy2 � y1Þ þ cð_y2 � _y1Þ

� �
¼ 0

(8)

Since we do not have a harmonic forcing function in our system, a Fourier expansion would lead to a more
complicated nonlinear system of equations with a considerable loss of accuracy. So, we chose to work with the
original set of equations. The key issue here is that the Heaviside step function is not differentiable at the point
of impact, when y1 ¼ y2. To solve the set of equations in a continuous domain, an approximation of the
Heaviside function (differentiable at the critical point) is required. We used the following logistic function:

Uðy2 � y1Þ �
1

2
ð1þ tanh½rðy2 � y1Þ�Þ ¼

1

1þ e�2rðy2�y1Þ
(9)
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As the value of r is increased, the approximation becomes steeper (Fig. 2). Since we are converting a
condition (of detecting impacts) into a numerical function, the value of r has no bearing on the computational
efficiency of the solver. Thus, for a sufficiently high value of r�10x, ‘functional accuracy’ is ensured.

To ensure better accuracy, adaptive time stepping was incorporated. The advantage of doing so is twofold.
A bigger time step in regions away from the impact saves significant computation time. In the proximity of the
impact point, the time interval is reduced successively such that the displacement curve is always differentiable
in the impact region. With a fixed time step this may not be possible, especially in the case of sharp impact
(when there is a large change in velocity before and after the impact; see Fig. 3(a)). But with an adaptive time
step, the solver always ensures that the curve traverses the impact zone smoothly (Fig. 3(b)). While doing so,
y2 exceeds y1. In a way, this behaviour is serendipitous. The collision between two rigid bodies is a finite time
(though infinitesimally small) event. Bodies undergoing collision deform during the impact, much like the
deformation shown in Fig. 3(b). Thus, by using this formulation of the spring–damper impact model, it is
possible to accurately simulate real impacts. The values of the spring stiffness and the damping coefficient have
to be determined from solid mechanics analysis of the bodies undergoing impact. The only limitation in this
formulation is the computational ability of the solver. In Fig. 3(b), the impact duration is 2.68� 10�8 s. Using

faster computers, in principle, the impact duration can be reduced further.
Fig. 2. Logistic function plotted for different values of r.
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Fig. 3. Time waveform with (a) fixed time step and (b) adaptive time step. o, y1; *,y2.
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The set of working equations thus obtained is as follows:
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2.2.2. Contact force correction

Jonsson et al. [7] have highlighted the issue of contact force correction in great detail, considering all the
possible transition conditions, providing simulated results for each case and have also suggested contact and
non-contact conditions while modelling impact using spring and damper elements. The contact force torque
on two links is given by

T1
ct ¼ kðy2 � y1Þ þ cð_y2 � _y1Þ (12)

T2
ct ¼ kðy1 � y2Þ þ cð_y1 � _y2Þ (13)

For two rigid bodies undergoing collision, the contact force in principle should always beX0. If the collision is
perfectly elastic, then the condition T1

ct40 is always satisfied in the model above. But in case there is some loss of
energy involved, there can be a point where T1

ct crosses 0 and becomes negative. That would imply local adhesion,
where although the two masses will be moving away from each other, the ‘contact force’ is in a direction that
opposes their separation. This is an effect of the dissipation term, which always opposes the relative motion. Thus,
when the spring is coming back to its relaxed position, the two terms of T1

ct would be opposing each other
(bringing the value to 0 and then negative). To correct this situation that is not physically consistent, we need to
make sure that the two masses should ‘detach’ completely from one another when T1

ct ¼ 0. Physically, it implies
that contact has been lost. Imposing this condition is consistent with the theory of inelastic impacts. Whenever
there is an impact between two bodies, a local deformation takes place along the common normal. In the case of
perfectly elastic impacts, the deformation is completely restored but in the case of inelastic impacts, some residual
deformation remains when the two masses separate. To impose this condition, we use another logistic function
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(approximation of the Heaviside step function of T1
ct)
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1
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� 	
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(14)

The final set of working equations that we used for simulation is given as follows:
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2.2.3. Coefficient of restitution

The effective coefficient of restitution during impact can be varied by changing the spring constant or the
damping coefficient. The relations for coefficient of restitution stated below have been derived in the
Appendix.

Coefficient of restitution : w ¼ exp
�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p cos�1ð2x2 � 1Þ

 !
(17)

Duration of impact : dt ¼

ffiffiffi
I

k

r
cos�1ð2x2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p (18)

Damping ratio : x ¼
c

2
ffiffiffiffiffi
kI
p (19)

Effective moment of inertia : I ¼
ð4rm þ 3Þm2l

2
1

6ð6r2l þ 6rl þ 2rmr2l þ 2Þ
(20)

rm ¼
m1

m2
; rl ¼

l1

l2
(21)

Note that the duration of impact primarily depends on the value of k. This makes the stiffness a parameter
critical for consistency. Hence, the value of k is kept constant for all the simulations and the coefficient of
restitution is varied through the damping coefficient c.

3. Simulation results

3.1. Inelastic impacts (w40)

The following values of the system parameters were used for the simulation:

m1 ¼ m2 ¼ 0:1 kg; l1 ¼ l2 ¼ 0:1m; k ¼ 1012 Nm; c has been varied

For w ¼ 1, the energy of the system is conserved (Fig. 4). The response of the system is aperiodic but follows
a repeated pattern. There are 5 impacts per cycle (refer to Fig. 4(c) and (d)).

In the phase-plane plot, with 0owo1, a gradually collapsing set of curves is obtained. As w is decreased
(Fig. 5), the behaviour becomes more ordered, the number of impacts per cycle decreases and the variance in
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Fig. 4. (a) Time waveform. Initial condition: (�1,�1,0,0), w ¼ 1. o, y1; *, y2, (b) angular momentum versus time (13 cycles), (c) phase-

plane plot of y1 (w ¼ 1) and (d) phase-plane plot of y2 (w ¼ 1).
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angles of impact over subsequent cycles reduces. In all cases, on the first impact, the pendulum jumps into a
gradually collapsing ‘attractor’ after the first impact itself. The peripheral trajectory of this attractor can be
termed as the limiting curve. There is a fixed-energy limiting curve (phase space) of the system, independent of
the initial conditions and the coefficient of restitution. If the system starts from a point (phase space) inside the
limiting curve, then it traverses the characteristic trajectory in the gradually collapsing attractor (see Fig. 5).
But if the system starts from a point outside the limiting curve then it quickly jumps inside the curve after some
initial impacts. We observed that while starting from outside the limiting curve, the system may not necessarily
jump on the peripheral trajectory of the attractor (i.e., the limiting curve) but start on a lower trajectory close
to the peripheral one.

Note that for 0.7owo1 (Fig. 5), there are five impacts in every cycle. For w ¼ 0.6, there are four distinct
impacts. For values of wp0.6 there are a large number of small impacts till the two links separate completely
when both link angles are 0 rad, that is, when both links are vertical.

3.1.1. Angular momentum

As angular momentum (about the upper hinge) is conserved during impacts, we expect that there be no
jumps in the curve (see Fig. 6). For wo1, the angular momentum varies sinusoidally with the amplitude of
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successive peaks decaying exponentially (see Fig. 6). The slope of the envelope flattens as the solution
progresses in time (see Fig. 7(a)). The angular momentum curve is a good indicator of the periodicity. The
number of cycles of the response can be identified more easily than in the phase-plane plots (Fig. 6).

Fig. 7(b) depicts the time period (T) of oscillations of the pendulum plotted against time. As can be seen in
the figure, the time period never attains a fixed value but flutters about a mean value. The time period, when
averaged out on the asymptotic zone, is 0.738. From statistical curve fitting we found that the following
function maps the decay pattern of the angular momentum:

H ¼ Ae�ðt=aÞ
b
sinðoðtÞ þ fÞ (22)

where a, b are the function parameters, o is a function of time (Fig. 10), f depends on the initial condition.
The angular frequency function o(t) cannot be approximated by an explicit function. However, the

averaged out value of o(t) is best mapped by the following exponential chirp function:

oðtÞ ¼ B� Ce�ðt=tÞ (23)
Fig. 5. Phase-plane plots of the pendulum with varying coefficient of restitution (13 cycles). Initial condition: (�1,�1,0,0). (a) y1 (w ¼ 0.9),

(b) y2 (w ¼ 0.9), (c) y1 (w ¼ 0.8), (d) y2 (w ¼ 0.8), (e) y1 (w ¼ 0.7), (f) y2 (w ¼ 0.7), (g) y1 (w ¼ 0.6) and (h) y2 (w ¼ 0.6).
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Fig. 5. (Continued)
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There is no qualitative change in the time response of angular momentum with change in the coefficient of
restitution. The envelopes of the angular momentum decay have been plotted in Fig. 8 for different values of the
coefficient of restitution. It has been found that the system undergoes the same number of oscillations in a fixed
time interval irrespective of the coefficient of restitution. This establishes that the time period (or frequency of
oscillations) is a property of the mass and length parameters of the system only. In each case (of varying
coefficient of restitution) the time period asymptotically attained a fixed (averaged out) value as in Fig. 7(b).

Although there is no qualitative change in the shape of the envelope curves (see Fig. 8), there is a
quantitative change for varying values of coefficient of restitution. The parameter values of the curve fit are
shown in Table 1. The R2 value for all the fits is greater than 0.999, i.e., near perfect fit. Though we have only
simulated till w ¼ 0, we expect that for 0owo0.6, the response would be similar to those shown in Fig. 8.

The parameter values of the curve fit for angular frequency o are shown in Table 2.

3.1.2. Energy

As the coefficient of restitution is reduced, the trends in the energy loss in the system behave contrary to
intuition. It would be expected that the response would die down more quickly as the coefficient of restitution
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Fig. 6. Angular momentum versus time for different values of coefficient of restitution (25 cycles). Initial condition: (�1,�1,0,0).

Fig. 7. (a) Angular momentum versus time and (b) periodicity versus number of cycles.
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Fig. 8. Envelope of angular momentum versus time for varying coefficient of restitution.

Table 1

Parameter values of curves fit to angular momentum envelopes

Coefficient of restitution A a b

0.9 0.02151 51.3 0.81

0.8 0.02574 21.9 0.59

0.7 0.02258 30.1 0.67

0.6 0.02281 32 0.655

0 0.02329 49.2 0.56

Table 2

Parameter values of curves fit to angular frequency curve

Coefficient of restitution B C t

0.9 8.54 0.448 24

0.8 8.53 0.491 12

0.7 8.53 0.449 14.8

0.6 8.52 0.466 15.5

0 8.51 0.436 23.5

S. Singh et al. / Journal of Sound and Vibration 318 (2008) 1180–11961190
is decreased. But it is observed that as the coefficient decreases (Fig. 9), the energy loss after the same time
might actually decrease.

Fig. 9 shows the energy of systems after 25 cycles with varying coefficients of restitution when started
at the same energy level. Counter intuitively, the figures indicate that the energy remaining in the system
after 20 s decreases with increase in w (from 0 to 0.8). This unexpected phenomenon is due to change in the
number of impacts per cycle. As the coefficient of restitution increases, the number of impacts per cycle also
increase, which give a higher energy loss in totality even though the energy loss per impact is less. A lower
coefficient of restitution gives higher energy loss per impact but less number of impacts per cycle. For w40.8,
the trend changes, and as expected, the decay in energy is more rapid for smaller w (see Fig. 9(b)). Thus, there
is a minima in the rate of energy decrease around w ¼ 0.8 i.e., maximum energy loss takes place for this value
of w. (Note that the curves appear jagged because the energy losses occur only at impacts but is constant
otherwise.)
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Fig. 9. (a) Energy versus time for 25 cycles. Initial condition: (�1,�1,0,0), (b) enlarged view of energy decay.

Fig. 10. Energy versus time plot for two different initial conditions with same initial energy.

S. Singh et al. / Journal of Sound and Vibration 318 (2008) 1180–1196 1191
Two different sets of initial conditions with the same initial energy may produce different response.
This is because the angular position of the first impact and the energy lost in that impact would be
different for different sets of initial conditions, even with the same initial energy (see Fig. 10). However,
after a brief initial phase, the energy decay curves become coincident, i.e., the trajectories come close after an
initial phase.

3.2. Plastic impacts (w ¼ 0)

The case of w ¼ 0 (plastic impacts) can be considered separately as the phase-plane plots are characterised
by two impacts per cycle (see Fig. 11). In the case of idealised linear plastic impacts, the two impacting masses
stick and move as a single unit after the impact. However, in the case of the double pendulum, the links
separate for some time interval after the initial impact and subsequently impact again and move together as a
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Fig. 11. (a) Time waveform. Initial condition: (�1,�1,0,0). o, y1; *, y2, (b) a phase-plane cycle, (c) phase-plane plot of y1 (13 cycles) and (d)

phase-plane plot of y2 (13 cycles).
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single pendulum before separating again at y1,2 ¼ 0 (see Fig. 11(b)). We shall refer to the impact after which
they separate as the first impact, and the one after which they stick as the second impact.

We have verified that separation is not a numerical defect, but a phenomenon consistent with intuition.
The first impact takes place in the negative half of the y domain and the second impact takes place
in the positive half (Fig. 11(b)). The stopper causes impact in one direction. After the first impact, the reaction
forces of the upper hinge and the lower link exert a couple (about the centre of mass) on the upper link that
causes its angular acceleration to be higher than that of the lower link (which is only acted upon by the
reaction force of the upper link). The net torque acts to separate the links after impact, which is observed in
the simulation. The second impact takes place in the positive y domain where the net torque attempts to
separate the links in a direction that is resisted by the stopper. The two links hence end up sticking together
there on.

3.2.1. Angular momentum

The angular momentum and angular frequency (o) of oscillations are plotted in Figs. 12 and 13,
respectively.
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Fig. 12. Angular momentum versus time (133 cycles).

Fig. 13. Angular frequency versus time (133 cycles).

S. Singh et al. / Journal of Sound and Vibration 318 (2008) 1180–1196 1193
3.2.2. Energy

Energy decays in a concave curve (see Fig. 14(a)). If the energy lost per impact is plotted against the number
of cycles (the energy loss takes place primarily during the first impact as shown in Fig. 14(b), so the second one
can be ignored for all practical purposes), the decay has a steep slope (see Fig. 14(c)) for the initial 20 odd
cycles following which the curve asymptotic approaches 0. The ratio of energy lost in successive impacts is
plotted versus the number of cycles in Fig. 14(d). After being smooth initially (for 30 odd cycles), the curve
becomes noisy and asymptotically approaches the value 1. The noise is expected, as the energy loss per cycle is
quite small in the later cycles.

4. Conclusion

The impact model has been used to analyse the response of a self-impacting double pendulum with varying
coefficient of restitution. A methodology of modelling impact with energy losses amenable to time domain
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Fig. 14. (a) Energy versus time, (b) comparison of energy lost in first impact and second impact, (c) energy lost per impact versus number

of cycles and (d) ratio of energy lost in successive impacts versus number of cycles.

S. Singh et al. / Journal of Sound and Vibration 318 (2008) 1180–11961194
analysis has been demonstrated. The method, limited only by the computational ability of the solver, assumes
significance as the accuracy of solution of the nonlinear system resulting from the impact is driven by the
accuracy of the impact modelling. A double pendulum with inelastic self-impacts at the lower hinge is shown
to oscillate in a gradually collapsing (phase plane) attractor. The highest energy bound of this attractor (the
limiting curve) is independent of the coefficient of restitution and the initial conditions. The (time averaged)
time period of oscillations of the system approaches a unique value asymptotically, which depends only on the
mass and length parameters.

The energy lost after a fixed time interval (starting from the same energy level) surprisingly
increases with the coefficient of restitution in the range w ¼ 0–0.8. There is an energy minima
at w ¼ 0.8, beyond which the trend reverses and as usually expected, the energy loss decreases with
increase in w. The angular momentum decay rate is seen statistically to be exponential with the R2

(fitness parameter) value greater than 0.999. The case of plastic impact, w ¼ 0, is special and charac-
terised by smooth phase-plane trajectories with two impacts that have different flavours. One of
the impacts has no sticking phase at all and the separation is immediate even though it is modelled as
plastic.
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Appendix

The method used in this derivation follows closely the method of calculating the coefficient of restitution in
terms of spring–damper terms for liner impacts as described in Chatterjee et al. [6].

The mathematical model of impact in the double pendulum is shown in Fig. 15. The contact dynamics is
represented by the following set of equations:

ðm1 þ 3m2Þ

3
l21
€y1 þ

m2l1l2 €y2 cosðy1 � y2Þ
2

þ
m2l1l2 _y

2

2 sinðy1 � y2Þ
2

þ
ðm1 þ 2m2Þ

2
gl1 sin y1

þ kðy1 � y2Þ þ cð_y1 � _y2Þ ¼ 0 (24)

m2l
2
2
€y2

3
þ

m2l1l2 €y1 cosðy1 � y2Þ
2

�
m2l1l2 _y

2

1 sinðy1 � y2Þ
2

þ
m2gl2 sin y2

2
þ kðy2 � y1Þ þ cð_y2 � _y1Þ ¼ 0 (25)

In the presence of high impact force the gravity force terms can be neglected. Also, in the impact zone:
y1�y2E0, giving the following reduced equations:

ðm1 þ 3m2Þ

3
l21
€y1 þ

m2l1l2 €y2
2

þ kðy1 � y2Þ þ cð_y1 � _y2Þ ¼ 0 (26)

m2l
2
2
€y2

3
þ

m2l1l2 €y1
2

þ kðy2 � y1Þ þ cð_y2 � _y1Þ ¼ 0 (27)

Putting f ¼ y1�y2, the equations are further reduced to

I €fþ c _fþ kf ¼ 0 (28)

where

I ¼
ð4rm þ 3Þm2l21

6ð6r2l þ 6rl þ 2rmr2l þ 2Þ
(29)

rm ¼
m1

m2
; rl ¼

l1

l2

At the beginning of the contact phase, t ¼ 0, f ¼ 0, df/dt ¼ �o. The end of the contact phase is
determined by the time at which the contact force becomes 0, i.e., kf+cdf/dt ¼ 0 or d2f/dt2 ¼ 0.
Conventionally, the end of the contact is determined by the time at which f becomes 0 again. However,
making the contact force 0 gives a more accurate result. At the end of the contact phase

tc ¼

ffiffiffi
I

k

r
cos�1ð2x2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p (30)
Fig. 15. Spring–damper model of self-impact in a double pendulum.
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_fc ¼ oe ð�x=
ffiffiffiffiffiffiffiffi
1�x2
p

Þcos�1ð2x2�1Þ
� �

(31)

x ¼
c

2
ffiffiffiffiffi
kI
p (32)

where tc represents the duration of impact and (df/dt)c is the relative velocity when the contact is lost. Thus
from the definition of coefficient of restitution (w)

w ¼ exp
�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p cos�1ð2x2 � 1Þ

 !
(33)
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